Magnesium-permeable TRPM6 polymorphisms in patients with meningomyelocele
نویسندگان
چکیده
BACKGROUND To evaluate whether there is an association between single nucleotide polymorphisms in magnesium-permeable TRPM6 ion channel and development of meningomyelocele (MMC). Therefore, we examined a total of 150 children with MMC, along with age- and gender-matched controls. DNA collected from whole blood was analyzed for the presence of two polymorphisms, rs2274924 (A > G; K1579E; Leu1579Glu) and rs3750425 (G > A; Val1393Ile), in TRPM6. Serum Mg2+ and calcium levels were also examined. RESULTS A statistically significant difference in the distribution of rs2274924 genotypes (p = 0.049) was observed between the groups. Decreases in the AA genotype, and increases in the AG heterozygous genotype were also detected in the study group. The distribution of polymorphisms in the rs3750425 genotype and alleles was not statistically different between groups. Serum Mg2+ levels were lower in the GG genotype of rs3750425 compared with the GA and AA genotypes (p = 0.003). CONCLUSIONS A statistically significant difference in rs3750425 genotypes was observed between the patients with MMC and the controls, which corresponded to lower serum Mg2+ concentrations in these patients. Taken together, these results suggest that genetic variations in the Mg2+-permeable TRPM6 ion channel may play a role in the etiopathogenesis of MMC during embryonic development.
منابع مشابه
Insight into the molecular regulation of the epithelial magnesium channel TRPM6.
PURPOSE OF REVIEW Recent studies have greatly increased our knowledge concerning the molecular mechanisms of renal magnesium handling. This review highlights the functional features of the newly identified transient receptor potential channel melastatin subtype 6 (TRPM6), which forms the gatekeeper of active magnesium reabsorption in the kidney. RECENT FINDINGS TRPM6 confines a magnesium perm...
متن کاملEpithelial Mg2+ channel TRPM6: insight into the molecular regulation.
Our understanding of the molecular mechanisms of renal magnesium (Mg2+) handling has greatly enhanced over recent years. This review highlights the regulatory factors controlling Mg2+ homeostasis through its effects on the epithelial Mg2+ channel TRPM6 (Transient Receptor Potential Melastatin subtype 6), the gatekeeper of the body's Mg2+ balance. Drug treatment, acid-base status, and several ho...
متن کاملTransient receptor potential melastatin 6 knockout mice are lethal whereas heterozygous deletion results in mild hypomagnesemia.
BACKGROUND Hypomagnesemia with secondary hypocalcemia is due to disturbed renal and intestinal magnesium (Mg(2+)) (re)absorption. The underlying defect is a mutation in the transient receptor potential melastatin type 6 (TRPM6), a Mg(2+)-permeable ion channel expressed in the kidney and intestine. Our aim was to characterize homozygous (-/-) and heterozygous (+/-) TRPM6 knockout mice with respe...
متن کاملEpithelial Mg channel TRPM6: insight into the molecular regulation
Our understanding of the molecular mechanisms of renal magnesium (Mg) handling has greatly enhanced over recent years. This review highlights the regulatory factors controlling Mg homeostasis through its effects on the epithelial Mg channel TRPM6 (Transient Receptor Potential Melastatin subtype 6), the gatekeeper of the body’s Mg balance. Drug treatment, acid-base status, and several hormones h...
متن کاملNew TRPM6 mutation and management of hypomagnesaemia with secondary hypocalcaemia.
BACKGROUND TRPM6 gene mutation has been reported to cause hypomagnesemia with secondary hypocalcemia (HSH). However, the genotype-phenotype correlation for TRPM6 gene mutations has not been clarified. OBJECTIVE To elucidate the factors underlying the severe neurological complications in HSH and evaluate the potential association between the location of TRPM6 gene mutations and clinical data o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2016